近世代数
杨子胥编著
评分 7.1分
本书较系统地介绍了群、环、域的基本概念和基本性质.全书共分3章,第1章介绍群的基本概念和性质,除了通常的群、子群、正规子群、商群和群的同态基本定理外,还介绍了对称与群、群的直积、有限Abel群的结构定理等内容;第2章讲述了环、子环、理想与商环、环的同态等基本概念和性质,讨论了整环及整环上的多项式环的性质和应用;第3章讨论了域的扩张理论及其在几何作图中的应用.本书附有相当丰富的习题,有利于读者学习和
范畴与同调代数基础
李桃生
评分 0.0分
本书包括模、范畴、几类特殊模、复形、函子、同调、应用举例六章。
群论彩图版
Nathan Carter
评分 8.5分
《群论彩图版》旨在帮助读者看到群、认识群、验证群,从而理解群的实质。《群论彩图版》通过大量的图像和直观解释来介绍群论。 《群论彩图版》的主要内容有:群是什么、群看起来像什么、为什么学习群、群的代数定义、五个群族、子群、积与商、同态的力量、西罗定理、伽罗瓦理论。每章最后一节为习题,书后附有部分习题答案。 《群论彩图版》适合抽象代数(近世代数)课程的学生和教师,也适合那些首次接触群论并需要在较短时间内
代数学II
B. L. van der Waerden, 范德瓦爾登
评分 8.9分
全书共分两卷,涉及的面很广,可以说概括了1920—1940年代数学的主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之一。本书是第二卷。这一卷可分成3个独立的章节组:第12至14章讨论线性代数、代数和表示论;第15至17章是理想理论;第18至20章讨论赋值域、代数函数及拓扑代数。 目录 第12章 线性代数 12.1 环上的模 12.2 Euclid环中的模、不变因子 12.3 A
有限群表示论
曹锡华, 时俭益
《有限群表示论(第2版)》旨在介绍有限群的表示理论,其中包括群表示论的基本概念与两条主要研究途径的介绍。书的前八章介绍有限群的常表示理论(即在特征数不整除群的阶数的域上的表示,具有完全可约性),着重论述了与群的诱导表示有关的一些经典结果,同时也探讨了域的选取与群表示分解之间的关系。后四章介绍有限群模表示的Brauer理论(即在特征数整除群的阶数的域上的表示,一般不具备完全可约性),该理论通过p模系
代数学引论(第二版)
聂灵沼, 丁石孙
评分 8.1分
《代数学引论(第2版)》是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪课程教材。《代数学引论(第2版)》是作者根据多年教学经验,在原有讲义基础上经过修改、补充而成的。书中介绍了代数学的基本知识:第一至第七章给出群、环、模、域四个基本的代数结构及其性质;第八章介绍伽罗瓦理论;第九章是多重线性代数初步。各章后配有相当数量的习题。全书相当于一学年课程的教材。《代数学
代数拓扑基础
[美]James R.Munkres
评分 8.6分
本书根据James R.Munkres所著“Elements of Algebraic Topology” (Perseus出版社1993年版)译出。. 全书共分8章74节,内容丰富,论述精辟,主要内容包括单纯同调群及其拓扑不变性、Eilenberg-Steenrod公理系统、奇异同调论、上同调群与上同调环、同调代数、流形上的对偶等。.. 由于作者独具匠心的灵活编排,使得本书能适合于多种教学需要,
整数与多项式
冯克勤,余红兵
评分 8.8分
高等代数
张禾瑞, 郝炳新
评分 7.6分
《高等代数(第5版)》是在第四版的基础上,作了不太大的修订。第一章介绍代数中最基本的概念;第二章至第九章是多项式理论初步和线性代数基础这两部分,这是高等代数的中心内容;第十章对群、环、域作了简单的介绍;作为附录,从向量空间的分解的角度讲述矩阵的若尔当标准形式。《高等代数(第5版)》可作为高等学校数学院系本科生教材,也可供理工科教师和学生参考。
三十年来的苏联数学 1917-1947 代数学
Н·Г·切伯塔廖夫, А·Г·库罗什, А·И·马力切夫
图解代数
Courtney Brown
图解代数即一种将社会科学理论翻译成数学公式的语言,这种语言被用来简化建模过程,以便发展出用其他方式不太能完成的更为精致的模型,去描述复杂的社会科学思想。作者用图解代数重新构造了线性回归模型,介绍了图解代数中时间算子的应用,特别是当系统中含有反馈和控制的时候。随后,作者用美国工会成员身份的例子来揭示一种估计图解代数模型的方法,以描述图解代数怎样被应用于系统方程。最后,作者介绍图解代数关于条件路径的思
代数学Ⅰ
欧阳毅, 申伊塃
本书是中国科学技术大学代数系列教材三部曲的第一部,是“代数学基础”课程参考教材。本书对群、环、域的定义和基本性质,循环群和对称群(置换群),整数理论,域和整数上的多项式理论等进行介绍,目的是为后续的线性代数、近世代数和数论(包括数论的应用)等众多课程提供基础。本书在保留中国科学技术大学初等数论课程传统内容的基础上,增加了复数、韦达定理等高中忽视的内容,强调了等价关系这个大学数学教学难点,增加了群、
纠错码的代数理论
冯克勤
本书概要介绍半个世纪以来由数字通信的可靠性要求所建立和不断发展的纠错码数学理论。书中不涉及纠错技术和工程具体实现问题,但也介绍了一些纠错译码算法。 本书适用于代数专业的研究生和具有较好代数基础的高年级本科生。书中所讲述的知识和方法对于研究信息科学与计算机科学中许多其他问题也会有所帮助。
简明抽象代数
顾沛
评分 8.0分
《简明抽象代数》是大学本科一学期周3 学时的“抽像代数”课的教材,主要内容是群、环、域的基础知识。《简明抽象代数》的特点是简明实用,注重讲清抽象代数的思想和精神。
抽象代数1
孟道骥
评分 8.3分
《抽象代数1:代数学基础》可作为高等院校数学专业本科生及理工科研究生抽象代数课程的教材,也可供有关科技人员及大专院校师生自学参考。抽象代数(或近世代数)是数学的一个基础学科,也是数学及相关专业的基础课程.南开大学“抽象代数”课程的改革是陈省身生前倡导的南开大学数学专业教学改革的一部分,《代数学基础》是该课程改革后使用的教材。《抽象代数1:代数学基础》是由该教材修订、补充而成,内容包括基本概念、环、
抽象代数II
《抽象代数2:结合代数》力求深入浅出,循序渐进,特别注意与其他课程的联系,以使读者体会到“抽象代数是制造机器的机器”这一著名论述.更能体会到“玄之又玄,众妙之门”这样的哲理。抽象代数I是南开大学数学专业的必修课,抽象代数Ⅱ是该专业本科生的选修课和研究生的必修课,结合代数是应用非常广泛的一种代数结构,将这些内容作为该课程的内容是非常合适的《抽象代数2:结合代数》是作者在长期教授该课程的基础上编写而成
交换代数导引
宋光天
《交换代数导引》讲述交换代数的基本理论和方法,在介绍经典的Noenther环和Dedekind整环理论的同时,重点突出了模与范畴以及局部化方法。这些内容都是学习代数几何和代数数论的公共代数基础,同时也为学习同调代数等其他数学学科打下基础。 学过近世代数课程的读者均可学习该教材。 《交换代数导引》可作为数学系研究生公共基础课教材和数学系高年级本科生选修课教材,也可供数学工作者参考。
代数数论
本书为《中国科学院研究生教学丛书》之一. 代数数论是研究代数数域和代数整数的一门学问.本书的主要内容是经典代数数论.全书共分三部分:第一、二部分为代数理论和解析理论,全面介绍了19世纪代数数论的成就;第三部分为局部域理论,简要介绍了20世纪代数数论的一些内容.附录中给出了本书用到的近世代数的基本知识和进一步学习代数数论的建议.每节末附有习题. 本书的是大学数学系教师和高
环与代数
刘绍学, 郭晋云, 朱彬, 韩阳
《环与代数》主要介绍国内外环与代数的最新研究成果和发展方向,在第一版的基础上,除删除了一些陈旧内容外,还增添关于分次环、路代数、箭图表示、有限表示型箭图4章,力图向读者介绍分次环、箭图及其表示最基本的知识,使之能够了解和进入环与代数当前研究的一些非常具有活力的领域。我们将介绍分次环、分次模、分次Artin环、Smash积、分次本原环、箭图的路代数、路代数的性质、路代数的张量积和箭图的直积;箭图表示
有限群导引(下)
徐明曜
组合矩阵论
柳柏濂
《研究生教学用书:组合矩阵论》介绍近20余年发展起来的一个新分支——组合矩阵论。内容包括矩阵和图的谱、矩阵的组合性质、非负矩阵的幂序列和矩阵方法与矩阵分析等。《研究生教学用书:组合矩阵论》第一版是国内第一本介绍组合矩阵论的著作,填补了我国在这方面理论的空白。现在作为教育部审定的全国研究生教材重新出版,作者对原著作了增删,并补充了各章的习题和解答、必要的附录,更便于读者的教学和参考。《研究生教学用书
同调代数
周伯壎
格论导引
方捷
《格论导引》讲述格论的基本概念与基础知识。其基本内容涵盖:有序集、保序映射、格与半格、完全格、理想与同态、格同余等基本概念;模格与半模格;分配格;有补格与布尔代数;伪补代数;heyting代数(或称剩余格);de morgan代数;priestley拓扑对偶理论。 作者在第一章中, 首先较全面地介绍格论的基础概念和性质,并配备相当量的图形与例子,以使读者对格论的基本概念有一个直观的理解。从第二章开
控制论中的矩阵计算
徐树方
《控制论中的矩阵计算》主要介绍控制论中几个典型矩阵计算问题的数值解法。全书共分7章,内容包括:矩阵分析基础、控制系统概论、矩阵指数的计算、lyapunov方程的数值解法、代数riccati方程的数值解法、非对称代数riccati方程的数值解法、极点配置问题的数值解法。本书在内容上,力求向读者展示这一领域既基本又重要的知识、方法和技巧以及最新的进展。本书在叙述表达上,力求清晰易读,便于教学与自学。
几何与拓扑的概念导引
古志鸣
评分 9.5分
《几何与拓扑的概念导引》致力于对几何与拓扑的基本概念的解释及基本理论的综述,内容涉及古典几何、微分流形与李群、微分几何、拓扑学、代数曲线。《几何与拓扑的概念导引》叙述较为细致,语言较为通俗,需要的预备知识较少,特别注意从直观的几何现象入手讲解抽象的概念,尽量介绍本学科与其他学科的关系,以便照顾更多的读者群体。《几何与拓扑的概念导引》是了解近代几何与拓扑学的导引,可作为大学数学系及其他有关专业的研究
多项式代数
王东明, 牟晨琪, 李晓亮, 杨静, 金萌, 黄艳丽
评分 8.7分
《多项式代数》内容简介:多项式代数是研究多项式和多项式系统所定义的代数与几何对象的结构、性质、特征、表示及计算的非线性代数。《多项式代数》系统介绍多项式代数的基本概念、核心理论、主要算法及若干应用。全书共分六章,前两章介绍与多项式相关的概念和运算、多项式系统的消元理论以及代数方程组的求解方法。以此为基础,第三章探讨交换代数与代数几何中的构造性理论和各种计算问题;第四章介绍由实系数多项式等式和不等式
代数学引论
许以超
近世代数习题解
杨子胥
评分 8.2分
本题解是由作者和同志在长期教学与科研基础上不断积累,并参阅国内外相关文献编写而成的。全书共编造816道题,它包括了作者所编著的《近世代数》中几乎全部的习题解答。 本书共分五章,前两章给出群论方面的题解422个,后三章给出环与域方面的题解394个。这些题目大体上包括了通行的近世代数的内容。当然,也有少数题目稍深入一些,其中也吸收了作者在群、环、域方面所发表的一些论文成果。 近世代数是一门比较
高等代数解题方法
许甫华, 张贤科
本书是学习高等代数和线性代数的辅导参考书,内容系统深入。在内容的组织上,以清华版《高等代数学》(张贤科、许甫华编著,第2版2004年)各章为基准,内容有:系统的线性代数学,数与多项式理论,近世代数介绍,变换族(群),正交几何与辛几何,Hilbert空间,张量积和外积等,共12章。每章包括:概念和定理介绍;解题方法思路的分析总结;《高等代数学》(第2版)中全部习题的详细分析解答;补充题与解答,书中融