泛函分析
孙炯, 王万义, 郝建文
评分 9.5分
《泛函分析》是高等学校数学与应用数学专业“泛函分析”课程的教材。全书分为七章,内容包括:距离空间、赋范空间、内积空间、有界线性算子、共轭空间和共轭算子、线性算子的谱理论和紧线性算子的谱分解。《泛函分析》从有限维空间元素的分解、对称矩阵按照特征值对角化等实例出发,采用类比、归纳等方法,把有限维空间的数学方法自然地推广到无穷维空间。前三章建立起相应的空间框架,后四章介绍了有界线性算子空间的重要性质,自
泛函分析基础
步尚全
评分 9.4分
《泛函分析基础》主要论述泛函分析的,基本内容及其在分析及逼近论中的应用。《泛函分析基础》共分为五大部分,依次论述度量空间、赋范空间、内积空间、赋范空间中的基本定理及有界线性算子的谱论。 《泛函分析基础》可以作为综合性大学工科各专业学生以及没有修过实变函数的理科各专业学生学习泛函分析的教材,也可以作为数学系学生学习泛函分析时的参考书。
鞅与Banach空间几何学
刘培德
评分 0.0分
《鞅与Banach空间几何学》是关于研究“鞅与Banach空间几何学”的专著,具体包括了:鞅收敛性与空间的RN性质、Enflo—PisieI重赋范定理、向量值Littlewood—Paley定理、经典分析与鞅论中不等式的最优系数、p光滑空间值鞅的大数定律等方面的内容。
应用泛函分析
胡适耕李鹏奇
评分 7.5分
应用泛函分析,ISBN:9787030116642,作者:胡适耕编著
实变函数与泛函分析学习指导
魏国强
《实变函数与泛函分析学习指导》是与高等教育出版社出版的程其囊等编写的《实变函数与泛函分析基础》(2003年第二版)配套的学习指导书。按照教材体例,逐章对应编写。每章包括内容小结、学习要点、例题选讲、习题解答和补充习题五部分。书末给出补充习题的详细提示。《实变函数与泛函分析学习指导》可作为师范院校数学系各专业学生、自学读者、函授学员以及其他高等院校有关读者学习实变函数与泛函分析的辅导书,也可以作为教
实变函数论
徐森林
评分 7.1分
《实变函数论》全书共分4章。第1章主要介绍集合论的基本知识、几个重要的集类。着重用势研究实函数。详细论证了Baire定理,并给出了它的应用。第2章和第3章比较完整地阐明一般测度理论和积分理论。突出描述了Lebesgue测度与Lebesgue积分理论,以及LebesgueStieltjes测度与LebesgueStieltjes积分理论。第4章引进了Banach空间(Lp,‖·‖p)(p≥1)和
实变函数习题精选
实变函数论是数学的一个重要分支,它在近代数学的各分支中有着广泛而深刻的应用。《实变函数习题精选》详细解答了由徐森林、薛春华编写的《实变函数论》中的练习题和复习题,尤其是其中的难题。它可帮助解难题有困难的读者渡过难关,也可帮助青年教师更好、更有信心地教好这门课。对应于原书,该书共分4章。全书的主要特点是:1.一题多解,使读者打开思路,开阔视野。每题叙述清晰,论证严密;2.给出解题思路,突出关键;3.
算子代数与非交换Lp空间引论
许全华, 吐尔德别克, 陈泽乾
《算子代数与非交换Lp空间引论》介绍算子代数与非交换Lp空间的基本内容,共分6章。第1章和第2章阐述C*代数的基本理论,包括Gelfand变换、连续函数演算、Jordan分解和GNS构造等内容。第3章和第4章系统论述von Neumann代数的基本理论,涵盖了核算子、算子代数的局部凸拓扑、Borel函数演算、von Neumann二次交换子定理和Kaplansky稠密性定理、正规泛函等内容。第5章
实分析导论
丁传松 李秉彝 布伦
本书共分十章.主要内容包括:连续函数的典型性质;无处单调函数的初等构造法;Baire函数类;Darboux函数;近似连续函数;函数的Dini导数;近代积分的描述性意义. 本书主要读者对象:高校数学系高年级学生、研究生、数学工作者.
泛函分析疑难分析与解题方法
《泛函分析疑难分析与解题方法》是《大学数学的内容、方法与技巧丛书》之一,是学习泛函分析课程的一本很好的辅导书。《泛函分析疑难分析与解题方法》编写顺序与一般的泛函分析教材同步,内容包括度量空间、线性有界算子、希尔伯特空间的几何学三大部分。《泛函分析疑难分析与解题方法》在凝练知识、释疑解难的基础上,用大理、全面的例题对度量空间、赋范线性空间、线性算子与线性泛函、内积空间与各种算子及它们的谱分解的概念、
索伯列夫空间
王明新
《索伯列夫空间》作为一本研究生教材或参考书,较系统地介绍了各向同性的整指数(整数阶)索伯列夫(Sobolev)空间,实指数(分数阶)Sobolev空间,关于x与t异性的Sobolev空间,Morrey空间、Campanat0空间和BM0空间。书中内容深入浅出,文字通俗易懂,并配有适量难易兼顾的习题。
侯友良 编
《21世纪高等学校数学系列教材:泛函分析(理工类本科生)》系统地介绍了泛函分析的基础知识。全书共分五章:第1章,距离空间与赋范空间;第2章,有界线性算子;第3章,Hilbert空间;第4章,有界线性算子的谱;第5章,拓扑线性空间。 《21世纪高等学校数学系列教材:泛函分析(理工类本科生)》在选材上注重少而精,强调基础性。在结构安排上,由浅入深,循序渐进,系统性和逻辑性强。在叙述表达上,力求严谨简洁
实分析
程民德;邓东皋;龙瑞麟
本书是以实变函数与泛函分析课程内容为先导的介绍近代实分析的引论性著作。除必要的基础知识外,一些最活跃的研究领域,如Calderen—Zygmund奇异积分算子,Hp空间的实变理论,算于的加权模不等式等,在书中都得到了充分反映.全书通过对实变量函数所构成的各种函数空间(如Lebesgue空间、连续函数空间、Hardy空间、BMO空间等)和它们之间的算子作用以及Fourier分析、算子与空间内插等重要
张鸿庆 编著
本书讲直观,讲历史,讲理解,讲原型,讲欣赏,讲意境,讲设计,讲洞察,讲猜测,讲发展,简易直接,把握整体,力图使读者有体系自立、定理自出、居高临下、势如破竹的感觉。
《高等学校教材8:应用泛函分析(第3版)》是为高等理工科院校非数学类专业的高年级大学生、研究生和博士生编写的应用泛函分析教材,全书共分六章:前四章系统地介绍了度量空间、赋范线性空间和内积空间的基本概念和基础理论;后两章简要介绍了非线性分析、广义函数和Sobolev空间的基本理论。
实变函数与泛函数分析习题精解
宋国柱 编
《实变函数与泛函数分析习题精解(科学版)》由三部分内容组成,第一部分总结了实变函数和泛函分析的基本概念和主要定理,给出了教材《实变函数和泛函分析概要》中各章的习题解答;第二部分介绍了与教材《抽象分析基础》配套的各章习题、复习题及其解答;第三部分是南京大学硕士研究生入学考试实变函数试题选解。 《实变函数与泛函数分析习题精解(科学版)》可作为高等院校基础数学和应用数学、信息和计算数学、统计等专业的教学
陆善镇
随着研究生的扩招,招收研究生的数量越来越大,再加上培养方案,的改革,几年之后研究生学制将由3年缩短为2年。因此,出版研究生系列教材已经提到仪事,日程来。在20世纪90年代,北京师范大学出版社已经出版了几不本基础课教材;但未系统策划出版系列教材2005年5月,由北京师范大学学科学学院李仲来教授和北京师范大学出版社理科编辑部王松蒲主任惊醒了沟通和协商,准备对北京师范大学数学科学学院教师目前使用的北京师
泛函分析教程
童裕孙
评分 8.1分
《研究生教学用书·泛函分析教程》是研究生泛函分析教材。全书共7章,以概述线性泛函分析的基本理论为入口,分别介绍了Banach空间上紧算子和Fredholm算子、Banach代数、C*代数初步和Hilbert空间上正规算子的谱分析、无界算子、算子半群、无限维空间上的微分学、拓扑度理论等。《研究生教学用书·泛函分析教程》既注意以现代数学的观点统率各章节内容,突出泛函分析中重要的基本理论,也精选了在应用
实变函数与泛函分析(全两册)
郭大钧、黄春朝、梁方豪、韦忠礼/国别:中国大陆
本书共分十四章,第一章至第六章是实变函数的内容(上册),包括集合与点集、测度、可测函数与Lebesgue积分、Riemann-Stieltjcs积分和Lebesgue-Stieltjes积分等,并且对抽象测度和积分作了介绍;第七章至第十四章是泛函分析的内容(下册),包括距离空间与Banach空间、Hilbert空间、线性算子与线性泛函、全连续算子、自共轭算子等,并且对抽象函数与Banach代数、凸
泛函分析第二教程
夏道行等编
本书以简短的篇幅叙述了线性泛函分析的基础理论。全书分五章,按章序分别讲解度量空间的公理系统和点集拓扑性质、有界线性算子和有界线性泛函的基本定理、共轭窨与共轭算子、Hil-bert空间的几何学以及有界线性算子的谱理论。本书注重阐述窨和算子的一般理论;取材既有简捷的一面又有深入的一面;在突出基本理论框架的同时又有选择地叙述了它在若干方面的应用。 本书可作为教学系高年级大学本科教材或教学参考书,也可作为
泛函分析中的反例
汪林