张俊妮,美国哈佛大学统计学博士,北京大学光华管理学院商务统计及经济计量系副教授。研究领域包括贝叶斯分析、因果推断、数据挖掘及文本挖掘。在 Journal of American Statistical Association、Statistica Sinica 等期刊上发表二十余篇论文。曾获北京大学教学优秀奖、光华管理学院优秀课程奖。
数据挖掘与应用
张俊妮
评分 8.6分
《数据挖掘与应用》全面地介绍了数据挖掘的相关主题.包括数据理解与数据准备、关联规则挖掘、多元统计中的降维方法、聚类分析、神经网络、决策树方法、模型评估等内容。全书体系完整,文字精炼,注重对数据挖掘方法的直觉理解及其应用:同时,保持了一定的严谨性,为学生理解和运用这些方法提供了坚实的基础。 《数据挖掘与应用》实例丰富,并附有相应SAS程序,以便于学生尽快理解相关内容并用以解决实际问题。 《数据挖掘与
数据挖掘
评分 0.0分
本书以深入浅出的语言系统地讲解了数据挖掘的框架和基本方法,主要内容包括:数据挖掘与R语言概述、数据理解、数据准备、关联规则挖掘、聚类分析、线性模型与广义线性模型、神经网络的基本方法、决策树、基于决策树的模型组合、模型评估与比较。本书使用基于R语言的数据挖掘案例贯穿全书,并辅以上机实验和习题,帮助读者熟练使用R语言进行数据挖掘。 本书可作为高等院校数据分析与数据挖掘课程的教材,适合于有意学习并使用数
数据挖掘与应用(第二版)
评分 暂无
本书基于北京大学光华管理学院“数据挖掘与应用”课程。书中系统、全面地介绍了数据挖掘领域的理论、技术工具以及实践方法。主要内容包括:数据挖掘方法论、数据理解和数据准备、缺失数据、关联规则挖掘、多元统计降维、聚类分析、线性回归和广义线性回归、回归模型规则化、神经网络、决策树、支持向量机、模型评估、模型组合、协同过滤等。 书中在每种数据挖掘技术后,均辅以大量医疗、金融、营销、保